

Teaching –learning module compiled by the PARSEL consortium as part of an EC FP6 funded project (SAS6-CT-2006-042922-PARSEL) on Popularity and Relevance of Science Education for scientific Literacy

It wouldn't do any harm to drive 60 km/h in a city instead of 50 km/h would it?

A grade 10-12 mathematics module on Mathematical modelling

Abstract:

In most European countries, a fifth all of two-car accidents are caused by an unsuitable safety distance between the two cars. Failing to keep distance is especially dangerous on high-speed and heavy-traffic roads where the risks of pile-up accidents are high. This series of student centred activities engages groups of students to apply modelling tools in relation to braking distances of cars. It will allow them to construct their own rules of thumbs in relation to driving with a safe distance.

Sections included		
1.	Student activities	Describes the scenario in more detail and the tasks the students
	(for the students)	should perform
2.	Teaching guide	Suggests a teaching approach
3.	Assessment	Gives suggested formative assessment strategies

Developer: Claus Michelsen & Jan Alexis Nielsen

Institution: University of Southern Denmark

Country: Denmark

Overall Objectives/Competencies: The students are expected to:

- understand the difference between types of models (i.e. verbal, numerical, graphical and algebraic/symbolic)
- understand and communicate about general aspects of mathematical modeling
- be reflective about mathematical models
- be able to argue from mathematics
- graphing data
- evaluate and construct graphs and functions
- identify dependence relation between phenomena and translate those into dependence relations between weighed variables

Curriculum content: Types of functions

Kind of activity: thought and model eliciting activities

Anticipated time: 4-6 lessons

Prior Learning: Concept of function

This unique teaching-learning material is intended to guide the teacher towards promoting students' scientific literacy and quantitative literacy by recognizing learning in 4 domains – intellectual development, the process and nature of science and mathematics, personal development and social development.

Its uniqueness extends to an approach to science and mathematics lessons which is designed to be popular and relevant. For this the approach is intentionally from society to science and attempts to specifically meet student learning needs.

This uniqueness is specifically exhibited by:

- 1. a society related and issue-based title (supported in the student guide by a scenario);
- 2. student-centred emphasis on scientific and mathematical problem solving, encompassing the learning of a range of educational and scientific goals;
- 3. including socio-scientific decision making to relate the science and mathematics acquired to societal needs for responsible citizenship.

Developer: Claus Michelsen & Jan Alexis Nielsen

Institution: University of Southern Denmark

Country: Denmark