

Traffic Accident: who is to blame?

Assessment Criteria

The criteria for assessment relates to the intended learning gained by the students. The learning expected is that students will:

- * understand the problem and hence be able to draw a reconstruction diagram of the situation;
- * successfully complete calculations based on the laws of motion;
- successfully complete calculations based on an understanding of the coefficient of friction and its impact on the change in kinetic energy and work done against friction;
- * be able to cooperate as a member of a group in a discussion on the outcomes of the calculations to apportion blame;
- * be able to decide, with justification, whether the van driver was to blame for the accident and to refute alternative arguments.

It is suggested the teacher and the student are not interested in an overall mark that does not indicate strengths and weakness in the learning by the student. Rather the teacher and student is interested in whether the different components of learning to be expected is, or is not, being achieved, to the level deemed appropriate by the teacher. This requires separate assessments, based on each of the different learning outcomes intended. A suggested approach is x = learning not achieved to the level expected by the teacher, $\sqrt{}$ = learning reached the level expected; $\sqrt{\sqrt{}}$ = learning above that expected.

It is suggested that such assessment can be undertaken in a formative manner by (a) marking of written work and (b) observation/asking questions of the students during their group work. It is further suggested that such assessment can be undertaken on a lesson by lesson basis (combining the assessment approaches), or by separate teacher strategy over the whole module

Part A Suggested Formative Assessment by Lesson

Lesson 1 (Associated with stage 1)

	Dimension	Criteria for evaluation	Mark/grade
		The student:	given $(x, \sqrt{1}, \sqrt{1})$
1	Draws diagram to represent	provides graphical representation as required.	
	the accident situation.	presents the graphical representations of a suitable	
		size and in suitable detail.	
		provides full and appropriate labelling for	
		diagrams, figures, tables.	
2	Records data provided	records data appropriately on the reconstruction	
		diagram.	
3	Calculates from data	calculates time taken for boy to reach the point of	
	provided; making	the accident, based on assumptions made.	
	conclusions	draws appropriate conclusions based on the	
		calculations undertaken.	

Lesson 2 (Associated with stage 2)

	Dimension	Criteria for evaluation	Mark/grade
		The student:	given $(x, \sqrt{1}, \sqrt{1})$
1	Additional information	Suggests additional information that is required to	
	needed	determine whether the van drver is to blame for the	
		accident.	
2	Meaning of friction	Can explain the tyre marks on the road in terms of	
		friction	
3	Derive $v=(2ugs)^{1/2}$	Understands the link between change in kinetic	
		energy and work done against friction. Based on	
		this is able to derive the expression $v=(2ugs)^{1/2}$	

Developer: Jack Holbrook (adapted from Physics of Road Traffic Accidents by P.K.Tao: Hong Kong, Oxford University Press, 1987) Institution: International Council of Associations for Science Education (ICASE) Country: UK

Lesson 3 (Associated with stage 2)

	Dimension	Criteria for evaluation	Mark/grade
		The student:	given $(x, \sqrt{1}, \sqrt{1})$
1	Answer questions	Explain why the coefficient of friction is F/N.	
		Suggest how the coefficient of friction can be	
		determine experimentally.	
2	Undertake experimenta	Carries out experiments as a member of a group to	
		determine the coefficient of fraction and point out	
		experimental error.	
2	Undertake calculations	Calculates, individually, how long it took the van to	
		stop by making use of the skid marks.	
3	Interpret from data provided	Assuming a given reaction time for the van driver,	
	and making additional	determine the position of the van when the lights	
	calculations.	went red and the boy started to cross the road.	

Lesson 4 (Associated with stage 3)

	Dimension	Criteria for evaluation The student:	Mark/grade given $(x, \sqrt{2}, \sqrt{2})$
1	Scientific or socio-scientific	Justifies a decision on whether the van driver is to	
	reasoning	blame for the accident	
		Guides the discussion to arrive at a consensus	
		opinion across all students by determining the	
		assumptions being made.	

Developer:Jack Holbrook (adapted from Physics of Road Traffic Accidents by P.K.Tao: Hong
Kong, Oxford University Press, 1987)Institution:International Council of Associations for Science Education (ICASE)
UK

Part B Suggested Assessment if based on Teacher Strategy

Assessment Tool based on Teacher Marking of Written Material

	Dimension	Criteria for evaluation	Mark/grade
		The student:	given $(x, \sqrt{1}, \sqrt{1})$
1	Draws diagram to	provides graphical representation as required.	
	represent the accident	presents the graphical representations of a suitable	
	situation.	size and in suitable detail.	
		provides full and appropriate labelling for diagrams,	
		figures, tables	
2	Record data provided	records data appropriately on the reconstruction	
		diagram	
3	Interpret or calculate from	interprets data provided by undertaking calculations	
	data provided; making	accurately using the laws of motion (reinforcement of	
	conclusions	earlier learning).	
		applies data provided to undertake calculations	
		accurately using the relationship between change of	
		kinetic energy and work done against friction.	
		draws relevant conclusions based on the calculations	
		undertaken.	

Assessment Tool based on the Teacher's Observation

	Dimension	Criteria for evaluation	Mark/grade
		The student:	given $(x, \sqrt{1}, \sqrt{1})$
1	Functioning in the group during the discussion	Cooperates with others in the group and fully participates in the work of the group.	
		Illustrates leadership skills – guiding the group by thinking creatively and helping those needing assistance; summarising outcomes.	
		Shows tolerance with, and gives encouragement to, the group members.	
		Reaches a justified decision on whether to apportion blame to the van driver making reasonable assumptions	

Developer: Jack Holbrook (adapted from Physics of Road Traffic Accidents by P.K.Tao: Hong Kong, Oxford University Press, 1987) Institution: International Council of Associations for Science Education (ICASE) Country: UK

Developer:Jack Holbrook (adapted from Physics of Road Traffic Accidents by P.K.Tao: Hong
Kong, Oxford University Press, 1987)Institution:International Council of Associations for Science Education (ICASE)
UK